Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 917: 170218, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38280578

RESUMEN

Spatiotemporal distribution patterns of microplastic (MP) particles in lakes hinge on both the physical conditions in the lake and particle properties. Using numerical simulations, we systematically investigated the influence of lake depth and bathymetry, wind and temperature conditions, MP particle release location and timing, as well as particle diameter (10, 20, and 50 µm). Our results indicate that maximum lake depth had the greatest effect on the residence time in the water column, as it determines the settling timescale and occurrence of hydrodynamic complexity such as density-driven flows in the lake. Increasing particle size from 10 to 20 and 50 µm also significantly reduced the residence time making particle size the factor with the second strongest effect on the residence time and, in turn, on the availability of MP particles for uptake by organisms. Changing bathymetry from a uniform to a non-uniform had a less pronounced effect on particle residence time compared to maximum depth and particle size. Release location, wind conditions, and release time had comparably little effect on particle behavior but became more important as MP particle size decreased. The release of the 10 µm MP particles in the deeper lakes with uniform bathymetry during summer with stable thermal stratification, resulted in a nearly month-long turnover phase in the fall in which both settling and rising of particles occurred simultaneously. This was caused by convective heat and water transport during this period. In these scenarios about 2.6 to 5.4 % of the released MP particles were held in or returned to the water layers near the lake surface. While acknowledging the dominant role of lake depth and MP particle size on the particle residence time, this study further emphasizes that it is ultimately a particular combination of different factors and their interactions that shape MP distribution patterns in lakes.

2.
Water Res ; 243: 120349, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37482004

RESUMEN

Despite the significance of rivers and streams as pathways for microplastics (MP) entering the marine environment, limited research has been conducted on the behavior of MP within fluvial systems. Specifically, there is a lack of understanding regarding the infiltration and transport dynamics of MP across the streambed interface and within the hyporheic sediments. In this study, transport and retention of MP are investigated using a new numerical modeling approach. The model is built as a digital twin of accompanying flume experiments, which are used to validate the simulation results. The model accurately represents particle transport in turbulent water flow and within the hyporheic zone (HZ). Simulations for transport and infiltration of 1 µm MP particles into a sandy streambed demonstrate that the advection-dispersion equation can be used to adequately represent particle transport for pore-scale sized MP within the HZ. To assess the applicability of the modeling framework for larger MP, the experiment was repeated using 10 µm particles. The larger particles exhibited delayed infiltration and transport behavior, and while the model successfully represented the spatial extent of particle transport through the HZ, it was unable to fully replicate hyporheic transit times. This study is the first to combine explicit validation against experimental data, encompassing qualitative observations of MP concentration patterns and quantification of fluxes. By that, it significantly contributes to our understanding of MP transport processes in fluvial systems. The study also highlights the advantages and limitations of employing a fully integrated modeling approach to investigate the transport and retention behavior of MP in rivers and streams.


Asunto(s)
Microplásticos , Plásticos , Sedimentos Geológicos , Simulación por Computador , Ríos
3.
Environ Sci Process Impacts ; 24(10): 1782-1789, 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36001017

RESUMEN

Microplastic (MP) particles are ubiquitous in aquatic environments. Therefore, understanding the processes that affect their removal from the water column, such as sedimentation, is critical for evaluating the risk they pose to aquatic ecosystems. We performed sedimentation experiments in which polystyrene (PS) and PS + ferrihydrite, a short-range ordered ferric (oxy)hydroxide, were analyzed in settling columns after 1 day and 1 week of settling time. The presence of ferrihydrite increased sedimentation rates of PS at all pH values studied (pH 3-11). At pH 6 we found that almost all PS particles were removed from the water column after only one day of exposure time. SEM/EDS imaging confirmed heteroaggregation between the PS particles and ferrihydrite. Zeta potential measurements indicated that at acidic pH values the negatively charged PS surface was coated with positively charged ferrihydrite particles leading to charge reversal. Our results demonstrate for the first time that ferric (oxy)hydroxides drive heteroaggregation and subsequent removal of MP from the water column, especially at typical pH values found in natural lake environments. Given their abundance in aquatic systems ferric (oxy)hydroxides need to be regarded as key scavengers of MP.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Poliestirenos , Plásticos , Agua , Ecosistema
4.
Water Res ; 217: 118334, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35397370

RESUMEN

The input of nitrate and other agricultural pollutants in higher-order streams largely derives from first-order streams. The streambed as the transition zone between groundwater and stream water has a decisive impact on the attenuation of such pollutants. This reactivity is not yet well understood for lower-order agricultural streams, which are often anthropogenically altered and lack the streambed complexity allowing for extensive hyporheic exchange. Reactive hot spots in such streambeds have been hypothesized as a function of hydrology, which controls the local gaining (groundwater exfiltration) or losing (infiltration) of stream water. However, streambed microbial communities and activities associated with such reactive zones remain mostly uncharted. In this study, sediments of a first-order agriculturally impacted stream in southern Germany were investigated. Along with a hydraulic dissection of distinct gaining and losing reaches of the stream, community composition and the abundance of bacterial communities in the streambed were investigated using PacBio long-read sequencing of bacterial 16S rRNA gene amplicons, and qPCR of bacterial 16S rRNA and denitrification genes (nirK and nirS). We show that bidirectional water exchange between groundwater and the stream represents an important control for sediment microbiota, especially for nitrate-reducing populations. Typical heterotrophic denitrifiers were most abundant in a midstream net losing section, while up- and downstream net gaining sections were associated with an enrichment of sulfur-oxidizing potential nitrate reducers affiliated with Sulfuricurvum and Thiobacillus spp. Dispersal-based community assembly was found to dominate such spots of groundwater exfiltration. Our results indicate a coupling of N- and S-cycling processes in the streambed of an agricultural first-order stream, and a prominent control of microbiology by hydrology and hydrochemistry in situ. Such detailed local heterogeneities in exchange fluxes and streambed microbiomes have not been reported to date, but seem relevant for understanding the reactivity of lower-order streams.


Asunto(s)
Contaminantes Ambientales , Agua Subterránea , Microbiota , Contaminantes Ambientales/análisis , Agua Subterránea/química , Nitratos/análisis , ARN Ribosómico 16S , Agua/análisis
5.
Proc Natl Acad Sci U S A ; 116(7): 2494-2499, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30692250

RESUMEN

Biogeochemical reactions occur unevenly in space and time, but this heterogeneity is often simplified as a linear average due to sparse data, especially in subsurface environments where access is limited. For example, little is known about the spatial variability of groundwater denitrification, an important process in removing nitrate originating from agriculture and land use conversion. Information about the rate, arrangement, and extent of denitrification is needed to determine sustainable limits of human activity and to predict recovery time frames. Here, we developed and validated a method for inferring the spatial organization of sequential biogeochemical reactions in an aquifer in France. We applied it to five other aquifers in different geological settings located in the United States and compared results among 44 locations across the six aquifers to assess the generality of reactivity trends. Of the sampling locations, 79% showed pronounced increases of reactivity with depth. This suggests that previous estimates of denitrification have underestimated the capacity of deep aquifers to remove nitrate, while overestimating nitrate removal in shallow flow paths. Oxygen and nitrate reduction likely increases with depth because there is relatively little organic carbon in agricultural soils and because excess nitrate input has depleted solid phase electron donors near the surface. Our findings explain the long-standing conundrum of why apparent reaction rates of oxygen in aquifers are typically smaller than those of nitrate, which is energetically less favorable. This stratified reactivity framework is promising for mapping vertical reactivity trends in aquifers, generating new understanding of subsurface ecosystems and their capacity to remove contaminants.


Asunto(s)
Agua Subterránea/química , Nitratos/aislamiento & purificación , Contaminantes Químicos del Agua/aislamiento & purificación , Carbono/química , Ecosistema , Francia , Modelos Teóricos , Nitrógeno/química , Dióxido de Silicio/química , Calidad del Agua
6.
Ground Water ; 57(1): 140-152, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29569319

RESUMEN

The biogeochemical composition of stream water and the surrounding riparian water is mainly defined by the exchange of water and solutes between the stream and the riparian zone. Short-term fluctuations in near stream hydraulic head gradients (e.g., during stream flow events) can significantly influence the extent and rate of exchange processes. In this study, we simulate exchanges between streams and their riparian zone driven by stream stage fluctuations during single stream discharge events of varying peak height and duration. Simulated results show that strong stream flow events can trigger solute mobilization in riparian soils and subsequent export to the stream. The timing and amount of solute export is linked to the shape of the discharge event. Higher peaks and increased durations significantly enhance solute export, however, peak height is found to be the dominant control for overall mass export. Mobilized solutes are transported to the stream in two stages (1) by return flow of stream water that was stored in the riparian zone during the event and (2) by vertical movement to the groundwater under gravity drainage from the unsaturated parts of the riparian zone, which lasts for significantly longer time (> 400 days) resulting in long tailing of bank outflows and solute mass outfluxes. We conclude that strong stream discharge events can mobilize and transport solutes from near stream riparian soils into the stream. The impact of short-term stream discharge variations on solute exchange may last for long times after the flow event.


Asunto(s)
Agua Subterránea , Suelo , Soluciones , Agua , Movimientos del Agua
7.
Water Res ; 130: 185-199, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29223089

RESUMEN

Nitrate contamination in ground- and surface water is a persistent problem in countries with intense agriculture. The transition zone between rivers and their riparian aquifers, where river water and groundwater interact, may play an important role in mediating nitrate exports, as it can facilitate intensive denitrification, which permanently removes nitrate from the aquatic system. However, the in-situ factors controlling riparian denitrification are not fully understood, as they are often strongly linked and their effects superimpose each other. In this study, we present the evaluation of hydrochemical and isotopic data from a 2-year sampling period of river water and groundwater in the riparian zone along a 3rd order river in Central Germany. Based on bi- and multivariate statistics (Spearman's rank correlation and partial least squares regression) we can show, that highest rates for oxygen consumption and denitrification in the riparian aquifer occur where the fraction of infiltrated river water and at the same time groundwater temperature, are high. River discharge and depth to groundwater are additional explanatory variables for those reaction rates, but of minor importance. Our data and analyses suggest that at locations in the riparian aquifer, which show significant river water infiltration, heterotrophic microbial reactions in the riparian zone may be fueled by bioavailable organic carbon derived from the river water. We conclude that interactions between rivers and riparian groundwater are likely to be a key control of nitrate removal and should be considered as a measure to mitigate high nitrate exports from agricultural catchments.


Asunto(s)
Agua Subterránea/química , Nitratos/análisis , Ríos/química , Contaminantes Químicos del Agua/análisis , Calidad del Agua , Agricultura , Desnitrificación , Monitoreo del Ambiente , Agua Dulce , Alemania , Nitratos/química , Contaminantes Químicos del Agua/química
8.
Environ Sci Technol ; 51(17): 9970-9978, 2017 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-28800225

RESUMEN

Optical sensing technologies provide opportunities for in situ oxygen sensing capable of capturing the whole range of spatial and temporal variability. We developed a miniaturized Distributed Oxygen Sensor ("mDOS") specifically for long-term in situ application in soil and sediment. The mDOS sensor system enables the unattended, repeated acquisition of time series of in situ oxygen profiles at a subcentimeter resolution covering a depth of up to one meter. As compared to existing approaches, this provides the possibility to reveal highly variable and heterogeneous oxygen dynamics at a high, quasi-continuous resolution across both scales. The applicability of the mDOS to capture both intra- and interday fine-scale variability of spatiotemporal oxygen dynamics under varying hydrological conditions is exemplarily demonstrated. We specifically aim at estimating the dependency between oxygen dynamics and hydrologic conditions along the measured profiles. The mDOS system enables highly detailed insights into oxygen dynamics in various aquatic and terrestrial environments and in the inherent transition zones between them. It thus represents a valuable tool to capture oxygen dynamics to help disentangling the coupling between underlying hydrological and biogeochemical process dynamics.


Asunto(s)
Monitoreo del Ambiente/métodos , Oxígeno/análisis , Óptica y Fotónica , Suelo
9.
Glob Chang Biol ; 23(9): e5-e6, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28494127

RESUMEN

Increasing concentrations of dissolved iron and DOC are likely linked to decreasing nitrogen depositon.


Asunto(s)
Ciclo del Carbono , Hierro , Carbono , Nitrógeno , Fosfatos
10.
Environ Sci Technol ; 47(17): 9858-65, 2013 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-23889085

RESUMEN

One of the key environmental conditions controlling biogeochemical reactions in aquatic sediments like streambeds is the distribution of dissolved oxygen. We present a novel approach for the in situ measurement of vertical oxygen profiles using a planar luminescence-based optical sensor. The instrument consists of a transparent acrylic tube with the oxygen-sensitive layer mounted on the outside. The luminescence is excited and detected by a moveable piston inside the acrylic tube. Since no moving parts are in contact with the streambed, the disturbance of the subsurface flow field is minimized. The precision of the distributed oxygen sensor (DOS) was assessed by a comparison with spot optodes. Although the precision of the DOS, expressed as standard deviation of calculated oxygen air saturation, is lower (0.2-6.2%) compared to spot optodes (<0.1-0.6%), variations of the oxygen content along the profile can be resolved. The uncertainty of the calculated oxygen is assessed with a Monte Carlo uncertainty assessment. The obtained vertical oxygen profiles of 40 cm in length reveal variations of the oxygen content reaching from 90% to 0% air saturation and are characterized by patches of low oxygen rather than a continuous decrease with depth.


Asunto(s)
Monitoreo del Ambiente/métodos , Oxígeno/análisis , Ríos/química , Luminiscencia , Método de Montecarlo , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
11.
Ground Water ; 44(6): 837-52, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17087756

RESUMEN

Low river flows are commonly controlled by river-aquifer exchange, the magnitude of which is governed by hydraulic properties of both aquifer and aquitard materials beneath the river. Low flows are often important ecologically. Numerical simulations were used to assess how textural heterogeneity of an alluvial system influences river seepage and low flows. The Cosumnes River in California was used as a test case. Declining fall flows in the Cosumnes River have threatened Chinook salmon runs. A ground water-surface water model for the lower river basin was developed, which incorporates detailed geostatistical simulations of aquifer heterogeneity. Six different realizations of heterogeneity and a homogenous model were run for a 3-year period. Net annual seepage from the river was found to be similar among the models. However, spatial distribution of seepage along the channel, water table configuration and the level of local connection, and disconnection between the river and aquifer showed strong variations among the different heterogeneous models. Most importantly, the heterogeneous models suggest that river seepage losses can be reduced by local reconnections, even when the regional water table remains well below the riverbed. The percentage of river channel responsible for 50% of total river seepage ranged from 10% to 26% in the heterogeneous models as opposed to 23% in the homogeneous model. Differences in seepage between the models resulted in up to 13 d difference in the number of days the river was open for salmon migration during the critical fall months in one given year.


Asunto(s)
Sedimentos Geológicos , Ríos , Movimientos del Agua , Calibración , California , Simulación por Computador , Ecosistema , Entropía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...